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ABSTRACT
A broad range of research areas including Internet measurement,
privacy, and network security rely on lists of target domains to be
analysed; researchers make use of target lists for reasons of neces-
sity or efficiency. The popular Alexa list of one million domains is
a widely used example. Despite their prevalence in research papers,
the soundness of top lists has seldom been questioned by the com-
munity: little is known about the lists’ creation, representativity,
potential biases, stability, or overlap between lists.

In this study we survey the extent, nature, and evolution of top
lists used by research communities. We assess the structure and
stability of these lists, and show that rank manipulation is possible
for some lists. We also reproduce the results of several scientific
studies to assess the impact of using a top list at all, which list
specifically, and the date of list creation. We find that (i) top lists
generally overestimate results compared to the general population
by a significant margin, often even an order of magnitude, and (ii)
some top lists have surprising change characteristics, causing high
day-to-day fluctuation and leading to result instability. We conclude
our paper with specific recommendations on the use of top lists,
and how to interpret results based on top lists with caution.

CCS CONCEPTS
• Networks→ Network measurement;

ACM Reference Format:
Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zim-
mermann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. 2018. A
Long Way to the Top:, Significance, Structure, and Stability of Internet
Top Lists. In 2018 Internet Measurement Conference (IMC ’18), October 31-
November 2, 2018, Boston, MA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3278532.3278574

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’18, October 31-November 2, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5619-0/18/10. . . $15.00
https://doi.org/10.1145/3278532.3278574

1 INTRODUCTION
Scientific studies frequently make use of a sample of DNS domain
names for various purposes, be it to conduct lexical analysis, to
measure properties of domains, or to test whether a new algorithm
works on real domains. Internet top lists, such as the Alexa or Cisco
Umbrella Top 1M lists, serve the purpose of providing a reputedly
representative sample of Internet domains in popular use. These
top lists can be created with different methods and data sources,
resulting in different sets of domains.

The prevalence and opacity of these lists could have introduced
an unchecked bias in science—for 10 networking venues in 2017
alone, we count 69 publications that use a top list. This potential
bias is based on the fact that curators of such top lists commonly
conceal the data sources and ranking mechanism behind those lists,
which are typically seen as a proprietary business asset in the search
engine optimisation (SEO) space [4]. This leaves researchers using
those lists with little to no information about content, stability,
biases, evolution and representativity of their contents.

In this work, we analyse three popular top lists—Alexa Global [1],
Cisco Umbrella [2], and Majestic Million [3]—and discuss the fol-
lowing characteristics:

Significance: In a survey of 687 networking-related papers pub-
lished in 2017, we investigate if, to what extent, and for what pur-
pose, these papers make use of Internet top lists. We find that 69
papers (10.0%) make use of at least one top list (cf., §3).

Structure: Domain properties in different top lists, such as the
surprising amount of invalid top-level domains (TLDs), low inter-
sections between various lists (<30%), and classifications of disjunct
domains, are investigated in §5.

Stability: We conduct in-depth longitudinal analyses of top list
stability in §6, revealing daily churn of up to 50% of domains.

Ranking Mechanisms: Through controlled experiments and
reverse engineering of the Alexa toolbar, we shed light on the
ranking mechanisms of different top lists. In one experiment, we
place an unused test domain at a 22k rank in Umbrella (cf., §7).

Research Result Impact: Scientific studies that use top lists for
Internet research measure characteristics of the targets contained
in each list, or the related infrastructure. To show the bias inherent
in any given target list, we run several experiments against top lists
and the general population of all com/net/org domains. We show
that top lists significantly exaggerate results, and that results even
depend on the day of week a list was obtained (cf., §8).

https://doi.org/10.1145/3278532.3278574
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We discuss related work and specific recommendations in §9.
Throughout our work, we aim to adhere to the highest ethical

standards, and aim for our work to be fully reproducible. We share
code, data, and additional insights under

https://toplists.github.io

2 DOMAIN TOP LISTS
This section provides an overview of various domain top lists and
their creation process. Each of these lists is updated daily.

Alexa: The most popular and widely used top list is the Alexa
Global Top 1M list [1]. It is generated based on web activity moni-
tored by the Alexa browser plugin1, “directly measured sources” [6]
and “over 25,000 different browser extensions” [7] over the past
three months [8] from “millions of people” [6]. No information
exists on the plugin’s user base, which opens questions on potential
biases in terms of, e.g., geography or age of its user base. Alexa
lists are generally offered for sale, with few free offerings. Paid
offerings include top lists per country, industry, or region. The
Global Top 1M list is the most popular free offering, available with
no explicit license, and was briefly suspended in late 2016.

Cisco Umbrella: Another popular top list is the Cisco Umbrella
1M, a top list launched in mid-December 2016. This list contains
the Top 1M domains (including subdomains) as seen by Cisco’s
OpenDNS service [2]. This DNS-based nature is fundamentally
different from collecting website visits or links. Hence, the Umbrella
list contains Fully Qualified Domain Names (FQDN) for any kind
of Internet service, not just web sites as in the case of Alexa or
Majestic. Without explicit license, it is provided “free of charge”.

Majestic: The third top list is the Majestic Million [3], released
in October 2012. This creative commons licensed list is based on
Majestic’s web crawler. It ranks sites by the number of /24 IPv4-
subnets linking to that site [9]. This is yet another data collection
methodology and, similar to Alexa, heavily web-focused. While
the Majestic list is currently not widely used in research, we still
include it in our study for its orthogonal mechanism, its explicitly
open license, and its availability for several years.

Other Top Lists: There are few other top lists available, but as
those are little used, not consistently available, or fluctuate in size,
we will not investigate them in detail in this paper. Quantcast [10]
provides a list of the Top 1M most frequently visited websites per
country, measured through their web intelligence plugin on sites.
Only the US-based list can be downloaded; all other lists can only
be viewed online and show ranks only when paid. The Statvoo [11]
list provides an API and a download for their Top 1M sites, but has
frequently been inaccessible in the months before this publication.
Statvoo does not offer insights about the metrics they use in their
creation process. The Chrome UX report [12] publishes telemetry
data about domains popular with Chrome users. It does not, how-
ever, rank domains or provide a static-sized set of domains. We also
exclude the SimilarWeb Top Sites ranking [13] as it is not available
for free and little used in science.
1Available for Firefox and Chrome. Internet Explorer discontinued June 2016 [5]

3 SIGNIFICANCE OF TOP LISTS
Scientific literature often harnesses one or more of the top lists out-
lined in §2. To better understand how often and to what purpose top
lists are used by the literature, we survey 687 recent publications.

3.1 Methodology
We survey papers published at 10 network-related venues in 2017,
listed in Table 1. First, we search the 687 papers published at these
venues for keywords2 in an automated manner. Next, we inspect
matching papers manually to remove false positives (e.g., Amazon’s
Alexa home assistant, or an author named Alexander), or papers
that mention the lists without actually using them as part of a study.

Finally, we reviewed the remaining 69 papers (10.0%) that made
use of a top list, with various aims in mind: to understand the
top lists used (§3.2), the nature of the study and the technologies
measured (§3.3), whether the study was dependent on the list for its
results (§3.4), and whether the study was possibly replicable (§3.5).
Table 1 provides an overview of the results.

We find the field of Internet measurement to be most reliant on
top lists, used in 22.2% of the surveyed papers. Other fields also use
top lists frequently, such as security (8.5%), systems (6.4%) and web
technology (7.9%).

3.2 Top Lists Used
We first investigate which lists and what subsets of lists are typically
used; Table 1 provides an overview of lists used in the studies we
identified. We find 29 studies using the full Alexa Global Top 1M,
the most common choice among inspected publications, followed
by a surprising variety of Alexa Top 1M subsets (e.g., Top 10k).

All papers except one [69] use a list collated by Alexa. This paper
instead uses the Umbrella Top 100 list to assess importance of ASes
showing BGP bursts. No paper in our study used the Majestic list.

A study may also use multiple distinct subsets of a list. For
example, one study uses the Alexa Global Top 1k, 10K, 500K and
Top 1M at different stages of the study [61]. We count these as
distinct use-cases in the right section of Table 1.

We also find that 59 studies exclusively use Alexa as a source
for domain names. Ten papers use lists from more than one origin;
one paper uses the Alexa Global Top 1M, the Umbrella Top 1M, and
various DNS zone files as sources [21]. In total, two studies make
use of the Cisco Umbrella Top 1M [21, 67].

Category and country-specific lists are also being used: eight
studies use country-specific lists from Alexa, usually choosing only
one country; one study selected 138 countries [26]. Category-based
lists are rarer still: two studies made use of category subsets [17, 71].

3.3 Characterisation of Studies
To show that top lists are used for various types of studies, we look
at the range of topics covered and technologies measured in our
surveyed papers. For each paper we assigned a broad purpose, and
the network layer in focus.

Purposes: For all papers, we reviewed the broad area of study.
The largest category we identified encompasses various aspects
2Those being: “alexa”, “umbrella”, and “majestic”

https://toplists.github.io
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Table 1: Left: Use of top lists at 2017 venues. The ‘dependent’ column indicates whether we deemed the results of the study to rely on the
list used (‘Y’), or that the study relies on a list for verification (‘V’) of other results, or that a list is used but the outcome doesn’t rely on the
specific list selected (‘N’). The ‘date’ column indicates how many papers stated the date of list download or measurement. Right: Type of
lists used in 69 papers from left. Multiple counts for papers using multiple lists.

using list # dependent # date?
Venue Area Papers # % ↓ Y V N List Study References

ACM IMC Measurements 42 11 26.2% 8 2 1 1 3 [14–24]
PAM Measurements 20 4 20.0% 3 1 0 0 0 [25–28]
TMA Measurements 19 3 15.8% 1 1 1 0 0 [29–31]

USENIX Security Security 85 12 14.1% 8 4 0 2 0 [32–43]
IEEE S&P Security 60 5 8.3% 3 2 0 1 1 [44–49]
ACM CCS Security 151 11 7.3% 4 5 2 1 1 [50–60]
NDSS Security 68 3 4.4% 2 0 1 0 0 [61–63]

ACM CoNEXT Systems 40 4 10.0% 2 1 1 0 1 [64–68]
ACM SIGCOMM Systems 38 3 7.9% 3 0 0 0 0 [69–71]

WWW Web Tech. 164 13 7.9% 11 1 1 2 3 [72–84]

Total 687 69 10.0% 45 17 7 7 9

Alexa Global Top . . .

1M 29 5k 2
100k 2 1k 5
75k 1 500 8
50k 2 400 1
25k 2 300 1
20k 1 200 1
16k 1 100 8
10k 11 50 3
8k 1 10 1

Alexa Country: 2
Alexa Category: 2
Umbrella 1M: 3
Umbrella 1k: 1

of security, across 38 papers in total: this includes phishing at-
tacks [81, 82], session safety during redirections [83], and domain
squatting [58], to name a few. Nine more papers study aspects of
privacy & censorship, such as the Tor overlay network [61], or user
tracking [35]. Network or application performance is also a popular
area: ten papers in our survey focus on this, e.g., HTTP/2 server
push [72], mobile web performance [71], and Internet latency [26].
Other studies look at economic aspects such as hosting providers.

Layers: We also reviewed the network layers measured in each
study. Many of the papers we surveyed focus on web infrastructure:
22 of the papers are concerned with content, 8 focus on the HTTP(S)
protocols, and 7 focus on applications (e.g., browsers [39, 40]).

Studies relating to core network protocols are commonplace:
DNS [32, 36, 51, 52, 61] (we identified 3 studies relating to domain
names as separate from DNS protocol measurements [24, 58, 63]),
TCP [19, 31], and IP [14, 15, 18, 30, 64, 69], and TLS/HTTPS [21, 37,
38, 50, 57, 76, 83] layer measurements are common in our survey.

Finally, we identify 12 studies whose experimental design mea-
sures more than one specific layer; e.g., cases studying a full con-
nection establishment (from initial DNS query to HTTP request).

We conclude from this that top lists are frequently used to explic-
itly or implicitly measure DNS, IP, and TLS/HTTPS characteristics,
which we investigate in depth in §8.

3.4 Are Results Dependent on Top Lists?
In this section, we discuss how dependent study results are on top
lists. For this, we fill the “dependent” columns in Table 1 as follows:

Dependent (Y): Across all papers surveyed, we identify 45 stud-
ies whose results may be affected by the list chosen. Such a study
would take a list of a certain day, measure some characteristic over
the set of domains in that list, and draw conclusions about the mea-
sured characteristic. In these cases, we say that the results depend

on the list being used: a different set of domains in the list may
have yielded different results.

Verification (V):We identify 17 studies that use a list only to
verify their results. A typical example may be to develop some
algorithm to find domains with a certain property, and then use a
top list to check whether these domains are popular. In such cases,
the algorithm developed is independent of the list’s content.

Independent (N): Eight studies cite and use a list, but we deter-
mine that their results are not necessarily reliant on the list. These
papers typically use a top list as one source among many, such that
changes in the top list would likely not affect the overall results.

3.5 Are Studies Replicable?
Repeatability, replicability, and reproducibility are ongoing con-
cerns in Computer Networks [85, 86] and InternetMeasurement [87].
While specifying the date of when a top list was downloaded, and
the date when measurements where conducted, are not necessarily
sufficient to reproduce studies, they are important first steps.

Table 1 lists two “date” columns that indicate whether the list
download date or the measurement dates were given3. Across all 69
papers using top lists, only 7 stated the date the list was retrieved,
and 9 stated the measurement date. Unfortunately, only 2 papers
give both the list and measurement data and hence fulfil these basic
criteria for reproducibility. This does not necessarily mean that the
other papers are not reproducible, authors may publish the specific
top list used as part of data, or authors might be able to provide
the dates or specific list copies upon inquiry. However, recent in-
vestigations of reproducibility in networking hints that this may
be an unlikely expectation [87, 88]. We find two papers that explic-
itly discuss instability and bias of top lists, and use aggregation or
enrichment to stabilise results [45, 67].
3We require a specific day to be given to count a paper, the few papers just citing a
year or month were counted as no date given
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3.6 Summary
Though our survey has a certain level of subjectivity, we consider
its broad findings meaningful: (i) that top lists are frequently used,
(ii) that many papers’ results depend on list content, and (iii) that
few papers indicate precise list download or measurement dates.

We also find that the use of top lists to measure network and
security characteristics (DNS, IP, HTTPS/TLS) is common. We fur-
ther investigate how top list use impacts result quality and stability
in studies by measuring these layers in §8.

4 TOP LISTS DATASET
For the three lists we focus on in this study, we source daily snap-
shots as far back as possible. Many snapshots come from our own
archives, and others were shared with us by other members of the
research community, such as [89–91]. Table 2 gives an overview of
our datasets along with some metrics discussed in §5. For the Alexa
list, we have a dataset with daily snapshots from January 2009 to
March 2012, named AL0912, and another from April 2013 to April
2018, named AL1318. The Alexa list underwent a significant change
in January 2018; for this we created a partial dataset named AL18
after this change. For the Umbrella list, we have a dataset spanning
2016 to 2018, named UM1618. For the Majestic Million list, we cover
June 2017 to April 2018.

As many of our analyses are comparative between lists, we create
a JOINT dataset, spanning the overlapping period from June 2017
to the end of April 2018. We also sourced individual daily snapshots
from the community and the Internet Archive [92], but only used
periods with continuous daily data for our study.

5 STRUCTURE OF TOP LISTS
In this section, we analyse the structure and nature of the three top
lists in our study. This includes questions such as top level domain
(TLD) coverage, subdomain depth, and list intersection.

DNS Terms used in this paper, for clarity, are the following: for
www.net.in.tum.de, .de is the public suffix4 (and top level domain),
tum.de is the base domain, in.tum.de is the first subdomain, and
net.in.tum.de is the second subdomain. Hence, www.net.in.tum.de
counts as a third-level subdomain.

5.1 Domain Name Depth and Breadth
A first characteristic to understand about top lists is the scope of
their coverage: how many of the active TLDs do they cover, and
how many do they miss? How deep are they going into specific
subdomains, choosing trade-offs between breadth and depth?

TLD Coverage is a first indicator of list breadth. Per IANA [94,
95], 1,543 TLDs exist as of May 20th, 2018. Based on this list, we
count valid and invalid TLDs per list. The average coverage of valid
TLDs in the JOINT period is ≈700 TLDs, covering only about 50%
of active TLDs. This implies that measurements based on top lists
may miss up to 50% of TLDs in the Internet.

At the Top 1k level we find quite different behaviour with 105
valid TLDs for Alexa, 50 for Majestic, but only 13 (com/net/org and
few other TLDs) for Umbrella. We speculate that this is rooted in
DNS administrators from highly queried DNS names preferring
4per Public Suffix List [93], a browser-maintained list aware of cases such as co.uk.

the smaller set of professionally managed and well-established top
level domains over the sometimes problematic new gTLDs [96–98].

Invalid TLDs occur neither in any Top 1k domains nor in the
Alexa Top 1M domains, but as a minor count in the Majestic Top 1M
(7 invalid TLDs, resulting in 35 domain names), and significant
count in the Umbrella Top 1M: there, we can find 1,347 invalid
TLDs5, in a total of 23k domain names (2.3% of the list). This is
an early indicator of a specific characteristic in the Umbrella list:
invalid domain names queried by misconfigured hosts or outdated
software can easily get included into the list.

Comparing valid and invalid TLDs also reveals another struc-
tural change in the Alexa list on July 20th, 2014: before that date,
Alexa had a fairly static count of 206 invalid and 248 valid TLDs.
Perhaps driven by the introduction of new gTLDs from 2013 [99],
Alexa changed its filtering: After that date, invalid TLDs have been
reduced to ≈0, and valid TLDs have shown continued growth from
248 to ≈800. This confirms again that top lists can undergo rapid
and unannounced changes in their characteristics, which may sig-
nificantly influence measurement results.

Subdomain Depth is an important property of top lists. Base
domains offermore breadth and variety in setups, while subdomains
may offer interesting targets besides a domain’s main web presence.
The ratio of base to subdomains is hence a breadth/depth trade-
off, which we explore for the three lists used. Table 2 shows the
average number of base domains (µBD ) per top list. We note that
Alexa and Majestic contain almost exclusively base domains with
few exceptions (e.g., for blogspot). In contrast, 28% of the names
in the Umbrella list are base domains, i.e., Umbrella emphasises
depth of domains. Table 2 also details the subdomain depth for a
single-day snapshot (April 30, 2018) of all lists. As the Umbrella list
is based on DNS lookups, such deep DNS labels can easily become
part of the Umbrella list, regardless of the origin of the request. In
fact, Umbrella holds subdomains up to level 33 (e.g., domains with
extensive www prefixes or ‘.’-separated OIDs).

We also note that the base domain is usually part of the list when
its subdomains are listed. On average, each list contains only few
hundred subdomains whose base domain is not part of the list.

Domain Aliases are domains with the same second-level do-
main, but different top-level domains, e.g., google.com and google.de.
Table 2 shows the number of domain aliases as DUPSLD . We find a
moderate level of ≈5% of domain aliases within various top lists,
with only 1.5% for Majestic. Analysis reveals a very flat distribution,
with the top entry google at ≈200 occurrences.

5.2 Intersection between Lists
We next study intersection between lists—all 3 lists in our study
promise a view on the most popular domains (or websites) in the
Internet, hence measuring how much these lists agree6 is a strong
indicator of bias in list creation. Figure 1a shows the intersection
between top lists over time during the JOINT period. We see that
the intersection is quite small: for the Top1M domains, Alexa and
Majestic share 285k domains on average during the JOINT duration.
5Examples for invalid TLDs: instagram, localdomain, server, cpe, 0, big, cs
6To control for varying subdomain length, we first normalise all lists to unique base
domains (cf. µBD in Table 2, reducing e.g., Umbrella to 273k base domains)
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Table 2: Datasets: mean of valid TLDs covered (µT LD ), mean of base domains (µBD ), mean of sub-domain level spread (SDn for share of
n-th level subdomains, SDM for maximum sub-domain level), mean of domain aliases (DUPSLD ), mean of daily change (µ∆) and mean of
new (i.e., not included before) domains per day (µNEW ). Footnote 4: Average after Alexa’s change in January 18.

List Top Dataset Dates µT LD ± σ µBD ± σ SD1 SD2 SD3 SDM DUPSLD µ∆ µNEW

Alexa 1M AL0912 29.1.09–16.3.12 248 ± 2 973k ± 2k 1.6% 0.4% ≈0% 4 47k ± 2k 23k n/a
Alexa 1M AL1318 30.4.13–28.1.18 545 ± 180 972k ± 6k 2.2% 0.1% ≈0% 4 49k ± 3k 21k 5k
Alexa 1M AL18 29.1.18–30.4.18 771 ± 8 962k ± 4k 3.7% ≈0% ≈0% 4 45k ± 1k 483k 121k

Alexa 1M JOINT 6.6.17–30.4.18 760 ± 11 972k ± 7k 2.6% ≈0% ≈0% 4 51k ± 4k 147k 38k
Umbrella 1M JOINT 6.6.17–30.4.18 580 ± 13 273k ± 13k 49.9% 14.7% 5.9% 33 15k ± 1k 100k 22k
Majestic 1M JOINT 6.6.17–30.4.18 698 ± 14 994k ± 617 0.4% ≈0% ≈0% 4 49k ± 1k 6k 2k

Alexa 1k JOINT 6.6.17- 30.4.18 105 ± 3 990 ±2 1.3% 0.0% 0.0% 1 22 ± 2 9 (784) 4 (84)
Umbrella 1k JOINT 6.6.17–30.4.18 13 ± 1 317 ±6 52.0% 14% ≈0% 6 11 ± 2 44 2
Majestic 1k JOINT 6.6.17–30.4.18 50 ± 1 939 ±3 5.9% 0.1% 0.1% 4 32 ± 1 5 .8

Umbrella 1M UM1618 15.12.16–30.4.18 591 ± 45 281k ± 16k 49.4% 14.5% 5.7% 33 15k±1k 118k n/a

Alexa and Umbrella agree on 150k, Umbrella and Majestic on 113k,
and all three only on 99k out of 1M domains.

For the Top1k lists, the picture is more pronounced. On average
during the JOINT period, Alexa and Majestic agree on 295 domains,
Alexa and Umbrella on 56, Majestic and Umbrella on 65, and all
three only on 47 domains.

This disparity between top domains suggests a high bias in the
list creation. We note that even both web-based lists, Alexa and
Majestic, only share an average of 29% of domains.

Standing out from Figure 1a is the fact that the Alexa list has
changed its nature in January 2018, reducing the average intersec-
tion with Majestic from 285k to 240k. This change also introduced
a weekly pattern, which we discuss further in §6.2. We speculate
that Alexa might have reduced its 3-month sliding window [8],
making the list more volatile and susceptible to weekly patterns.
We contacted Alexa about this change, but received no response.

5.3 Studying Top List Discrepancies
The low intersection between Umbrella and the other lists could be
rooted in the DNS vs. web-based creation. Our hypothesis is that
the web-based creation of Alexa and Majestic lists tends to miss
domains providing embedded content as well as domains popular
on mobile applications [67, 100]. In this section, we explore the
origin of discrepancies across domain lists.

We aggregate the Alexa, Umbrella, and Majestic Top 1k domains
from the last week of April 2018, and analyse the set of 3,005 disjunct
domains across these lists, i.e., those found only in a single list. 40.7%
of these domains originate from Alexa, 37.1% from Umbrella, and
22.1% fromMajestic. Subsequently, we identify whether the disjunct
domains are associated with mobile traffic or third-party advertis-
ing and tracking services not actively visited by users, but included
through their DNS lookups. We opt against utilizing domain classi-
fiers such as the OpenDNS Domain Tagging service [101], as it has
been reported that categories are vague and coverage is low [100].

Instead, we use the data captured by the Lumen Privacy Mon-
itor [102] to associate domains with mobile traffic for more than
60,000 Android apps, and use popular anti-tracking blacklists such

Table 3: Share of one-week Top 1k disjunct domains present in
hpHosts (blacklist), Lumen (mobile), and Top 1M of other top lists.

List # Disjunct % hpHosts % Lumen %Top 1M

Alexa 1,224 3.10% 1.55% 99.10%
Umbrella 1,116 20.16% 39.43% 25.63%
Majestic 665 1.95% 3.76% 93.63%

as MalwareBytes’ hpHosts ATS file [103]. We also check if the do-
mains from a given top list can be found in the aggregated Top 1M
of the other two top lists during the same period of time. Table 3
summarises the results. As we suspected, Umbrella has significantly
more domains flagged as “mobile traffic” and third-party advertis-
ing and tracking services than the other lists. It also has the lowest
proportion of domains shared with other Top 1M lists.

This confirms that Umbrella is capable of capturing domains
from any device using OpenDNS, such as mobile and IoT devices,
and also include domains users are not aware of visiting, such
as embedded third-party trackers in websites. Alexa and Majestic
provide a web-specific picture of popular Internet domains.

6 STABILITY OF TOP LISTS
Armed with a good understanding of the structure of top lists, we
now focus on their stability over time. Research has revealed hourly,
daily and weekly patterns on ISP traffic and service load, as well as
significant regional and demographic differences in accessed con-
tent due to user habits [104–107]. We assess whether such patterns
also manifest in top lists, as a first step towards understanding the
impact of studies selecting a top list at a given time.

6.1 Daily Changes
We start our analysis by understanding the composition and evolu-
tion of top lists on a daily basis. As all top lists have the same size,
we use the raw count of daily changing domains for comparison.

Figure 1b shows the count of domains that were removed daily,
specifically the count of domains present in a list on day n but
not on day n+1. The Majestic list is very stable (6k daily change),
the Umbrella list offers significant churn (118k), and the Alexa list
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(a) Intersection between Top1M lists (live). (b) Daily changes of Top1M entries.(live) (c) Average % daily change over rank.

Figure 1: Intersection, daily changes and average stability of top lists (y-axis re-scaled at 10% in right plot). Click for live version/source code

used to be stable (21k), but drastically changed its characteristic in
January 2018 (483k), becoming the most unstable list.

The fluctuations in the Umbrella list, and in the Alexa list after
January 2018, are weekly patterns, which we investigate closer in
§6.2. The average daily changes are given in column µ∆ of Table 2.

Which Ranks Change? Previous studies of Internet traffic
revealed that the distribution of accessed domains and services fol-
lows a power-law distribution [68, 104–107]. Therefore, the ranking
of domains in the long tail should be based on significantly smaller
and hence less reliable numbers.

Figure 1c displays the stability of lists depending on subset size.
The y-axis shows the mean number of daily changing domains in
the topX domains, where X is depicted on the x-axis. For example,
an x-value of 1000 means that the lines at this point show the aver-
age daily change per list for the Top 1k domains. The figure shows
instability increasing with higher ranks for Alexa and Umbrella,
but not for Majestic. We plot Alexa before and after its January
2018 change, highlighting the significance of the change across all
its ranks–even its Top 1k domains have increased their instability
from 0.62% to 7.7% of daily change.

New or In-and-out Domains? Daily changes in top lists may
stem from new domains joining, or from previously contained
domains re-joining. To evaluate this, we cumulatively sum all the
unique domains ever seen in a list in Figure 2a, i.e., a list with
only permutations of the same set of domains would be a flat line.
Majestic exhibits linear growth: every day, about 2k previously not
included domains are added to it — approximately a third of the
6k total changing domains per day (i.e., 4k domains have rejoined).
Over the course of a year, the total count of domains included in
the Majestic list is 1.7M. Umbrella adds about 20k new domains
per day (out of 118k daily changing domains), resulting in 7.3M
domains after one year. Alexa grows by 5k (of 21k) and 121k (of
483k) domains per day, before and after its structural change in
January 2018. Mainly driven from the strong growth after Alexa’s
change, its cumulative number of domains after one year is 13.5M.
This means that a long-term study of the Alexa Top 1M will, over
the course of this year, have measured 13.5M distinct domains.

Across all lists, we find an average of 20% to 33% of daily changing
domains to be new domains, i.e., entering the list for the first time.
This also implies that 66% to 80% of daily changing domains are
domains that are repeatedly removed from and inserted into a list.
We also show these and the equivalent Top 1k numbers in column
µNEW of Table 2.

This behaviour is further confirmed in Figure 2b. In this figure,
we compute the intersection between a fixed starting day and the
upcoming days. We compute it seven times, with each day of the
first week of the JOINT dataset as the starting day. Figure 2b shows
the daily median value between these seven intersections.

This shows several interesting aspects: (i) the long-term trend
in temporal decay per list, confirming much of what we have seen
before (high stability for Majestic, weekly patterns and high insta-
bility for Umbrella and the late Alexa list) (ii) the fact that for Alexa
and Umbrella, the decay is non-monotonic, i.e., a set of domains is
leaving and rejoining at weekly intervals.

For How Long are Domains Part of a Top List? We inves-
tigate the average number of days a domain remains in both the
Top 1M and Top 1k lists in Figure 2c. This figure displays a CDF
with the number of days from the JOINT dataset in the x-axis, and
the normalised cumulative probability that a domain is included
on the list for X or fewer days. Our analysis reveals significant
differences across lists. While about 90% of domains in the Alexa
Top 1M list are in the list for 50 or fewer days, 40% of domains
in the Majestic Top 1M list remain in the list across the full year.
With this reading, lines closer to the lower right corner are “better”
in the sense that more domains have stayed in the list for longer
periods, while lines closer to the upper left indicate that domains
get removed more rapidly. The lists show quite different behaviour,
with Majestic Top 1k being the most stable by far (only ≈ 26% of
domains present on < 100% of days), and being followed by Majes-
tic Top 1M, Umbrella Top 1k, Alexa Top 1k, Umbrella Top 1M, and
Alexa Top 1M. The Majestic Top 1M list offers stability similar to
the Alexa and Umbrella Top 1k lists.

6.2 Weekly Patterns
We now investigate the weekly7 pattern in the Alexa and Umbrella
lists as observed in Figure 1b. We generally do not include Majestic
as it does not display a weekly pattern. In this section, we resort to
various statistical methods to investigate those weekend patterns.
We will describe each one of them in their relevant subsection.

How Do Domain Ranks Change over the Weekends? The
weekly periodical patterns shown in Figure 1b show that list con-
tent depends on the day of the week. To investigate this pattern
statistically, we calculate a weekday and weekend distribution of
the rank position of a given domain and compute the distance be-
tween those two distribution using the Kolmogorov-Smirnov (KS)
7It is unclear what cut-off times list providers use, and how they offset time zones. For
our analysis, we map files to days using our download timestamp

https://toplists.github.io/#intersect
https://toplists.github.io/#dailychange
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(a)Cumulative sum of all domains ever included
in Top 1M lists (Top 1k similar).

(b) List intersection against a fixed starting set
(median value of seven different starting days)

(c) CDF of % of domains over days included in
Top 1M and Top 1k lists.

Figure 2: Run-up and run-down of domains; share of days that a domains spend in a top list for the JOINT dataset.

(a) Kolmogorov-Smirnov (KS) distance between
weekend and weekday distributions.

(b) Weekday/weekend dynamics in Alexa Top 1M
Second-Level-Domains (SLDs).

(c) Weekday/weekend dynamics in Umbrella
Top 1M SLDs.

Figure 3: Comparison of weekday vs. weekend distributions and dynamics in Second-Level-Domains (SLDs).

test. This method allows us to statistically determine to what degree
the distribution of a domain’s ranks on weekdays and weekends
overlap, and is shown in Figure 3a. We include Majestic as a base
line without a weekly pattern. For Alexa Top 1M, we can see that
≈35% of domains have a KS distance of one, meaning that their
weekend and weekday distributions have no data point in common.
This feature is also present in Umbrella’s rank, where over 15% of
domains have a KS distance of 1. The changes are less pronounced
for the Top 1k Alexa and Umbrella lists, suggesting that the top
domains are more stable. As a reference, the KS distance when
comparing weekdays to weekdays and weekends to weekends is
much lower. For 90% of domains in Alexa or Umbrella (Top 1k or
Top 1M) the distance is lower than 0.05. The KS distance is lower
than 0.02 for all of the domains in Majestic rankings (Top 1k or
Top 1M). This demonstrates that a certain set of domains, the ma-
jority of them localised in the long-tail, present disjunct rankings
between weekends and weekdays.

What Domains are More Popular on Weekends? This leads
to the question about the nature of domains changing in popularity
with a weekly pattern. To investigate this, we group domains by
“second-level-domain” (SLD), which we define as the label left of a
public suffix per the Public Suffix list [93]. Figures 3b and 3c display
the time dynamics of SLD groups for which the number of domains
varies by more than 40% between weekdays and weekends. For
Alexa, we can see stable behaviour before its February 2018 change.
We see that some groups such as blogspot.*8 or tumblr.com are
significantly more popular on weekends than on weekdays. The
opposite is true for domains under sharepoint.com (a web-based
8We include all blogspot.* domains in the same group

Microsoft Office platform). Umbrella shows the same behaviour,
with nessus.org (a threat intelligence tool) more popular during
the week, and ampproject.org (a dominant website performance
optimisation framework), and nflxso.net (a Netflix domain) more
popular on weekends. These examples confirm that different Inter-
net usage on weekends9 is a cause for the weekly patterns.

6.3 Order of Domains in Top Lists
As top lists are sorted, a statistical analysis of order variation com-
pletes our view of top lists’ stability. We use the Kendall rank corre-
lation coefficient [108], commonly known as Kendall’s τ coefficient,
to measure rank correlation, i.e., the similarity in the order of lists.
Kendall’s correlation between two variables will be high when
observations have a similar order between the two variables, and
low when observations have a dissimilar (or fully different for a
correlation of -1) rank between the two variables.

In Figure 4, we show the CDF of Kendall’s τ rank correlation
coefficient for the Alexa, Umbrella and Majestic Top 1k domains
in two cases: (i) for day to day comparisons; (ii) for a static com-
parison to the first day in the JOINT dataset. For analysis, we can
compare the percentage of very strongly correlated ranks, i.e., the
ranks for which Kendall’s τ is higher than 0.95. For day to day com-
parisons, Majestic is clearly most similar at 99%, with Alexa (72%)
and Umbrella (40%) both showing considerably dissimilarities.

When compared for a reference day, very strong correlation
drops below 5% for all lists. This suggests that the order variations
are not perceived in the short term, but may arise when considering
longer temporal windows.
9Our data indicates prevailing Saturday and Sunday weekends
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Table 4: Rank variation for some more and less popular websites in the Top 1M lists.

Domain Highest rank Median rank Lowest rank

Alexa Umbrella Majestic Alexa Umbrella Majestic Alexa Umbrella Majestic

google.com 1 1 1 1 1 1 2 4 8
facebook.com 3 1 2 3 6 2 3 8 19
netflix.com 21 1 455 32 2 515 34 487 572

jetblue.com 2,284 14,291 4,810 3,133 29,637 4,960 5,000 56,964 5,150
mdc.edu 25,619 177,571 24,720 35,405 275,579 26,122 88,093 449,309 30,914
puresight.com 183,088 593,773 687,838 511,800 885,269 749,819 998,407 999,694 869,872

Figure 4: CDF of Kendall’s τ between top lists.

Investigating the Long Tail: To compare higher and lower
ranked domains, we take three exemplary domains from the Top
100 and the lower ranks as examples. Table 4 summarises the results.
For each of the six domains, we compute the highest, median, and
lowest rank over the duration of the JOINT dataset. The difference
of variability between top and bottom domains is striking and in
line with our previous findings: the ranks of top domains are fairly
stable, while the ranks of bottom domains vary drastically.

6.4 Summary
We investigate the stability of top lists, and find abrupt changes,
weekly patterns, and significant churn for some lists. Lower ranked
domains fluctuate more, but the effect heavily depends on the list
and the subset (Top 1k or Top 1M). We can confirm that the weekly
pattern stems from leisure-oriented domains being more popular
on weekends, and give examples for domain rank variations.

7 UNDERSTANDING AND INFLUENCING TOP
LISTS RANKING MECHANISMS

We have seen that top lists can be rather unstable from day to day,
and hence we investigate what traffic levels are required and at what
effort it is possible to manipulate the ranking of a certain domain. As
discussed previously, the Alexa list is based on its browser toolbar
and “various other sources”, Umbrella is based on OpenDNS queries,
and Majestic is based on the count of subnets with inbound links to
the domain in question. In this section, we investigate the ranking
mechanisms of these top lists more closely.

7.1 Alexa
Alexa obtains visited URLs through “over 25,000 different browser
extensions” to calculate site ranks through visitor and page view

statistics [7, 109]. There is no further information about these tool-
bars besides Alexa’s own toolbar. Alexa also provides data to The
Internet Archive to add new sites [92]. It has been speculated that
Alexa provides tracking information to feed the Amazon recommen-
dation and profiling engine since Amazon’s purchase of Alexa in
1999 [110]. To better understand the ranking mechanism behind the
Alexa list, we reverse engineer the Alexa toolbar10 and investigate
what data it gathers. Upon installation, the toolbar fetches a unique
identifier which is stored in the browser’s local storage, called the
Alexa ID (aid). This identifier is used for distinctly tracking the
device. During installation, Alexa requests information about age,
(binary) gender, household income, ethnicity, education, children,
and the toolbar installation location (home/work). All of these are
linked to the aid. After installation, the toolbar transfers for each
visited site: the page URL, screen/page sizes, referer, window IDs,
tab IDs, and loading time metrics. For a scarce set of 8 search en-
gine and shopping URLs11, referer and URL are anonymised to their
host name. For all other domains, the entire URL, including all GET
parameters, is transmitted to Alexa’s servers under data.alexa.com.
Because of the injected JavaScript, the visit is only transmitted if
the site actually exists and was loaded. In April 2018, Alexa’s API
DNS name had a rank of ≈30k in the Umbrella list, indicating at
least 10k unique source IP addresses querying that DNS domain
name through OpenDNS per day (cf §7.2).

Due to its dominance, the Alexa rank of a domain is an impor-
tant criterion in domain trading and search engine optimisation.
Unsurprisingly, there is a gray area industry of sites promising to
“optimise” the Alexa rank of a site for money [111–113]. Although
sending synthetic data to Alexa’s backend API should be possible
at reasonable effort, we refrain from doing so for two reasons: (i) in
April 2018, the backend API has changed, breaking communication
with the toolbar, and (ii) unclear ethical implications of actively
injecting values into this API. We refer the interested reader to
le Pochat et al. [114], who have recently succeeded in manipulating
Alexa ranks through the toolbar API.

7.2 Umbrella
As the Umbrella list is solely based on DNS queries through the
OpenDNS public resolver, it mainly reflects domains frequently
resolved, not necessarily domains visited by humans, as confirmed
in §5.3. Examples are the Internet scanning machines of various
research institutions, which likely show up in the Umbrella ranking
10We detail the reverse engineering process in our dataset
11As of 2018-05-17, these are google.com, instacart.com, shop.rewe.de,
youtube.com, search.yahoo.com, jet.com and ocado.com
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Figure 5: Umbrella rank depending on probe count, query fre-
quency, and weekday (Friday left, Sunday right). Empty fields indi-
cate the settings did not result in a Top 1M ranking.

through automated forward-confirmed reverse-DNS at scanned
hosts, and not from humans entering the URL into their browser.
Building a top list based on DNS queries has various trade-offs and
parameters, which we aim to explore here. One specifically is the
TTL value of a DNS domain name. As the DNS highly relies on
caching, TTL values could introduce a bias in determining pop-
ularity based on DNS query volume: domain names with higher
Time-To-Live values can be cached longer and may cause fewer
DNS queries at upstream resolvers. To better understand Umbrella’s
ranking mechanism and query volume required, we set up 7 RIPE
Atlas measurements [115], which query the OpenDNS resolvers for
DNS names under our control.

Probe Count versus Query Volume:We set up measurements
with 100, 1k, 5k, and 10k RIPE Atlas probes, and at frequencies of 1,
10, 50, and 100 DNS queries per RIPE Atlas probe per day [115]. The
resulting ranks, stabilised after several days of measurement, are
depicted in Figure 5. A main insight is that the number of probes
has a much stronger influence than the query volume per probe:
10k probes at 1 query per day (a total of 10k queries) achieve a rank
of 38k, while 1000 probes at 100 queries per day (a total of 100k
queries) only achieve rank 199k.

It is a reasonable and considerate choice to base the ranking
mechanism mainly on the number of unique sources, as it makes
the ranking less susceptible to individual heavy hitters.

Upon stopping our measurements, our test domains quickly
(within 1-2 days) disappeared from the list.

TTL Influence: To test whether the Umbrella list normalises
the potential effects of TTL values, we query DNS names with 5
different TTL values from 1000 probes at a 900s interval [116]. We
could not determine any significant effect of the TTL values: all 5
domains maintain a distance of less than 1k list places over time.

This is coherent with our previous observation that the Umbrella
rank is mainly determined from the number of clients and not the
query volume per client: as the TTL volume would mainly impact
the query volume per client, its effect should be marginal.

7.3 Majestic
The Majestic Million top list is based on a custom web crawler
mainly used for commercial link intelligence [117]. Initially, Ma-
jestic ranked sites by the raw number of referring domains. As
this had an undesired outcome, the link count was normalised by
the count of referring /24-IPv4-subnets to limit the influence of
single IP addresses [118]. The list is calculated using 90 days of

data [119]. As this approach is similar to PageRank [120], except
that Majestic does not weigh incoming links by the originating
domain, it is to be expected that referral services can increase a
domain’s popularity. We can, however, not see an efficient way to
influence a domain’s rank in the Majestic list without using such re-
ferral services. Le Pochat et al. [114] recently influenced a domain’s
rank in the Majestic link through such purchasing of back links.

8 IMPACT ON RESEARCH RESULTS
§3 highlighted that top lists are broadly used in networking, security
and systems research. Their use is especially prevalent in Internet
measurement research, where top lists are used to study aspects
across all layers. This motivates us to understand the impact of
top list usage on the outcome of these studies. As the replication
of all studies covered in our survey is not possible, we evaluate
the impact of the lists’ structure on research results in the Internet
measurement field by investigating (i) common layers, such as DNS
and IP, that played a role in many studies, and (ii) a sample of
specific studies across a variety of layers, aiming for one specific
study per layer.

We evaluate those scientific results with 3 questions in mind:
(i) what is the bias when using a top list as compared to a general
population of all com/net/org domains12 (ii) what is the difference
in result when using a different top list? (iii) what is the difference
in result when using a top list from a different day?

8.1 Domain Name System (DNS)
A typical first step in list usage is DNS resolution, which is also
a popular research focus (cf. §3). We split this view into a record
type perspective (e.g., IPv6 adoption) and a hosting infrastructure
perspective (e.g., CDN prevalence and AS mapping). For both, we
download lists and run measurements daily over the course of one
year.

8.1.1 Record Type Perspective. We investigate the share of NX-
DOMAIN domains and IPv6-enabled domains, and the share of
CAA-enabled domains as an example of a DNS-based measurement
study [122]. Results are shown in Table 5 and Figure 6.

Assessing list quality via NXDOMAIN: We begin by using
NXDOMAIN as a proxy measure for assessing the quality of en-
tries in the top lists. An NXDOMAIN error code in return to a
DNS query means that the queried DNS name does not exist at
the respective authoritative nameserver. This error code is unex-
pected for allegedly popular domains. Ideally, a top list would only
provide existing domains. Surprisingly, we find the amount of NX-
DOMAIN responses in both the Umbrella (11.5%) and the Majestic
(2.7%) top lists higher than in the general population of com/net/org
domains (0.8%). This is in alignment with the fact that already ≈23k
domains in the Umbrella list belong to non-existent top-level do-
mains (cf., §5.1). Figure 6a shows that the NXDOMAIN share is,
except for Umbrella, stable over time. We found almost no NX-
DOMAINs among Top 1k ranked domains. One notable exception
is teredo.ipv6.microsoft.com, a service discontinued in 2013
12com/net/org is still only a 45% sample of the general population (156.7M of 332M
domains as per [121]), but more complete and still unbiased samples are difficult to
obtain due to ccTLDs’ restrictive zone file access policies. [21, 122–125]
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Table 5: Internet measurement characteristics compared across top lists and general population, usually given as µ ± σ . For each cell, we
highlight if it significantly (50%6) exceeds ▲ or falls behind ▼ the base value (1k / 1M, 1M / com/net/org), or not■ .
In almost all cases (▲ and ▼ ), top lists significantly distort the characteristics of the general population.

Alexa Umbrella Majestic Alexa Umbrella Majestic com/net/org
Study 1K 1K 1K 1M 1M 1M 157.24M ± 172K

NXDOMAIN1 ▼∼0.0% ± 0.0% ▼∼0.0% ± 0.0% ▼∼0.0% ± 0.0% ▼ 0.13% ± 0.02 ▲ 11.51% ± 0.9 ▲ 2.66% ± 0.09 0.8% ± 0.02
IPv6-enabled2 ▲ 22.7% ± 0.6 ▲ 22.6% ± 1.0 ▲ 20.7% ± 0.4 ▲ 12.9% ± 0.9 ▲ 14.8% ± 0.8 ▲ 10.8% ± 0.2 4.1% ± 0.2
CAA-enabled1 ▲ 15.3% ± 0.9 ▲ 5.6% ± 0.3 ▲ 27.9% ± 0.3 ▲ 1.7% ± 0.1 ▲ 1.0% ± 0.0 ▲ 1.5% ± 0.0 0.1% ± 0.0

CNAMEs3 ■ 53.1% ± 1.1 ▲ 44.46% ± 0.43 ▲ 64.8% ± 0.34 ■ 44.1% ± 1 ▼ 27.86% ± 1 ▲ 39.81% ± 0.15 51.4% ± 1.7
CDNs (via CNAME)3 ▲ 27.5% ± 0.89 ▲ 29.9% ± 0.37 ▲ 36.1% ± 0.22 ▲ 6% ± 0.6 ▲ 10.14% ± 0.63 ▲ 2.6% ± 0.01 1.3% ± 0.004
Unique AS IPv4 (avg.)3,4 256 ± 5 132 ± 4 250 ± 3 19511 ± 597 16922 ± 584 17418 ± 61 34876 ± 53
Unique AS IPv6 (avg.)3,4 44 ± 5 26 ± 2 48 ± 30 1856 ± 56 2591 ± 157 1236 ± 793 3025 ± 9
Top 5 AS (Share)3 ▲ 52.68% ± 1.74 ▲ 53.33% ± 1.75 ▲ 51.74% ± 1.73 ▲ 25.68% ± 0.67 ■ 33.95% ± 1.06 ▲ 22.29% ± 0.17 40.22 ± 0.09

TLS-capable5 ▲ 89.6% ▲ 66.2% ▲ 84.7% ▲ 74.65% ■ 43.05% ▲ 62.89% 36.69%
HSTS-enabled HTTPS5 ▲ 22.9% ■ 13.0% ▲ 27.4% ▲ 12.17% ▲ 11.65% ■ 8.44% 7.63%
HTTP23 ▲ 47.5% ± 0.75 ▲ 36.3% ± 2.4 ▲ 36.6% ± 0.72 ▲ 26.6% ± 0.88 ▲ 19.11% ± 0.63 ▲ 19.8% ± 0.15 7.84% ± 0.08

1: µ Apr, 2018 2: µ of JOINT period (6.6.17–30.4.18) 3: µ Apr, 2018 - 8. May, 2018 4: no share, thus no ▼ , ■ , or ▲ 5: Single day/list in May, 2018 6: For base values over 40%,
the test for significant deviation is 25% and 5σ .

(a) % of NXDOMAIN responses. (b) % of IPv6 Adoption. (c) % of CAA-enabled domains.

Figure 6: DNS characteristics in the Top 1M lists and general population of about 158M domains.

and unreachable, but still commonly appearing at high ranks in
Umbrella, probably through requests from legacy clients.

This also highlights a challenge inMajestic’s rankingmechanism:
while counting the number of links to a certain website is quite
stable over time, it also reacts slowly to domain closure.

Tracking IPv6 adoption has been the subject of several scien-
tific studies such as [126, 127]. We compare IPv6 adoption across
top lists and the general population, for which we count the num-
ber of domains that return at least one routed IPv6 address as an
AAAA record or within a chain of up to 10 CNAMEs. At 11–13%,
we find IPv6 enablement across top lists to significantly exceed the
general population of domains at 4%. Also, the highest adoption lies
with Umbrella, a good indication for IPv6 adoption: when the most
frequently resolved DNS names support IPv6, many subsequent
content requests are enabled to use IPv6.

CAA Adoption: Exemplary for other record types, we also
investigate the adoption of Certification Authority Authorization
(CAA) records in top lists and the general population. CAA is a
rather new record type, and has become mandatory for CAs to
check before certificate issuance, cf., [122, 128]. We measure CAA
adoption as described in [122], i.e., the count of base domains with
an issue or issuewild set. Similar to IPv6 adoption, we find CAA
adoption among top lists (1–2%) to significantly exceed adoption
among the general population at 0.1%. Even more stunning, the

Top 1k lists feature a CAA adoption of up to 28%, distorting the
0.1% in the general population by two magnitudes.

Takeaway: The DNS-focused results above highlight that top
lists may introduce a picture where results significantly differ from
the general population, a popularity bias to be kept in mind. Figure 6
also shows that Umbrella, and recently Alexa, can have different
results when using a different day. The daily differences, ranging,
e.g., from 1.5–1.8% of CAA adoption around a mean of 1.7% for
Alexa, are not extreme, but should be accounted for.

8.1.2 Hosting Infrastructure Perspective. Domains can be hosted by
users themselves, by hosting companies, or a variety of CDNs. The
hosting landscape is subject to a body of research that is using top
lists to obtain target domains. Here, we study the share of hosting
infrastructures in different top lists.

CDN Prevalence:We start by studying the prevalence of CDNs
in top lists and the general population of all com/net/org domains.
Since many CDNs use DNS CNAME records, we perform daily
DNS resolutions in April 2018, querying all domains both raw
www-prefixed. We match the observed CNAME records against a
list of CNAME patterns for 77 CDNs [129] to identify CDN use.

We first observe that the prevalence of CDNs differs by list and
domain rank (see Table 5), with all Top 1M lists exceeding the
general population by at least a factor of 2, and all Top 1k lists
exceeding the general population by at least a factor of 20. When
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Figure 7: Overall CDN ratio, ratio of top 5 CDNs, and ratio of top 5 ASes, dependent on list, list type, and weekday.

grouping the CDN ratio per list by weekdays (see Figure 7a), we
observe minor influences of weekends vs. weekdays due to the top
list dynamics described in §6.2.

After adoption of CDNs in general, we study the structure of
CDN adoption. We analyse the top 5 CDNs and show their distribu-
tion in Figure 7 to study if the relative share is stable over different
lists. We thus show the fraction of domains using one of the top 5
CDNs for both a subset of the Top 1k and the entire list of Top 1M
domains per list. We first observe that the relative share of the top
5 CDNs differs by list and rank (see Figure 7b), but is generally very
high at >80%. The biggest discrepancy is between using a top list
and focusing on the general population of com/net/org domains.
Google dominates the general population with a share of 71.17%
due to many (private) Google-hosted sites. Domains in top lists are
more frequently hosted by typical CDNs (e.g., Akamai). Grouping
the CDN share per list by weekday in Figure 7c shows a strong
weekend/weekday pattern for Alexa, due to the rank dynamics dis-
cussed in §6.2). Interestingly, the weekend days have a higher share
of Google DNS, indicating that more privately-hosted domains are
visited on the weekend.

These observations highlight that using a top list or not has
significant influence on the top 5 CDNs observed, and, if using
Alexa, the day of list creation as well.

ASes: We next analyse the distribution of Autonomous Systems
(AS) that announce a DNS name’s A record in BGP, as per Route
Views data from the day of the measurement, obtained from [130].
First, we study the AS diversity by counting the number of different
ASes hit by the different lists. We observe lists to experience large
differences in the number of unique ASes (cf., Table 5); while Alexa
Top 1M hits the most ASes, i.e., 19511 on average, Umbrella Top 1M
hits the fewest, i.e., 16922 on average. To better understand which
ASes contribute the most IPs, we next focus on studying the top
ASes. Figure 7d shows the top 5 ASes for the Top 1k and Top 1M
domains of each list, as well as the set of com/net/org domains. We
observe that both the set and share of involved ASes differ by list.

We note that the general share of the top 5 ASes is 40% in the
general population, compared to an average of 53% in the Top 1k
and an average of 27% in the Top 1M lists.

In terms of structure, we further observe that GoDaddy (AS26496)
clearly dominates the general population with a share of 25.99%,
while it only accounts for 2.74% on the Alexa Top 1M and for 4.45%
on the Majestic Top 1M.

While Alexa and Majestic share a somewhat similar distribution
for both the Top 1M and Top 1k lists, Umbrella offers a quite differ-
ent view, with a high share of Google/AWS hosted domains, which
also relates to the CDN analysis above.

This view is also eye-opening for other measurement studies:
with a significant share of a population hosted by different 5 ASes,
it is of no surprise that certain higher layer characteristics differ.

8.2 TLS
In line with the prevalence of TLS studies amongst the surveyed top
list papers in §3, we next investigate TLS adoption among lists and
the general population. To probe for TLS support, we instruct zgrab
to visit each domain via HTTPS for one day per list in May 2018. As
in the previous section, we measure all domains with and without
www prefix (except for Umbrella that contains subdomains), as
we found greater coverage for these domains. We were able to
successfully establish TLS connections with 74.65% of the Alexa,
62.89% of the Majestic, 43.05% of the Umbrella, and 36.69% of the
com/net/org domains (cf., Table 5). For Top 1k domains, TLS support
further increases by 15–30% per list.

These results show TLS support to be most pronounced among
Alexa-listed domains, and that support in top lists generally exceeds
the general population.

HSTS: As one current research topic [21], we study the preva-
lence of HTTP Strict Transport Security (HSTS) among TLS enabled
domains. We define a domain to be HSTS–enabled if the domain
provides a valid HSTS header with amax-age setting >0. Out of the
TLS-enabled domains, 12.17% of the Alexa, 11.65% of the Umbrella,
8.44% of the Majestic, and 7.63% of the com/net/org domains pro-
vide HSTS support (see Table 5). Only inspecting Top 1k domains
again increases support significantly to 22.9% for Alexa, 13.0% for
Umbrella, and 27.4% for Majestic. HSTS support is, again, over-
represented in top lists.

8.3 HTTP/2 Adoption
One academic use of top lists is to study the adoption of upcom-
ing protocols, e.g., HTTP/2 [125, 131]. The motivation for probing
top listed domains can be based on the assumption that popular
domains are more likely to adopt new protocols and are thus promis-
ing targets to study. We thus exemplify this effect and the influence
of different top lists by probing domains in top lists and the general
population for their HTTP/2 adoption.



IMC ’18, October 31-November 2, 2018, Boston, MA, USA Scheitle et al.

2018-04-11

2018-04-14

2018-04-17

2018-04-20

2018-04-23

2018-04-26

2018-04-29

2018-05-02

2018-05-05

2018-05-08
0

10

20

30

40

50

60

S
h

ar
e

[%
]

Alexa 1M
Alexa 1k

Umbrella 1M
Umbrella 1k

Majestic 1M
Majestic 1k

c/n/o

Figure 8: HTTP/2 adoption over time for the Top 1k and Top 1M
lists and com/net/org domains.

We try to fetch the domains’ landing page via HTTP/2 by using
the nghttp2 library. We again www-prefix all domains in Alexa and
Majestic. In case of a successfully established HTTP/2 connection,
we issue a GET request for the / page of the domain. We follow up
to 10 redirects and if actual data for the landing page is transferred
via HTTP/2, we count the domain as HTTP/2-enabled. We probe
top lists on a daily basis and the larger zone file on a weekly basis.

We show HTTP/2 adoption in Figure 8. First, we observe that the
HTTP/2 adoption of all com/net/org domains is 7.84% on average
and thus significantly lower than for domains listed in Top 1M lists,
(up to 26.6% for Alexa) and even more so for Top 1k lists, which
show adoption around 35% or more.

One explanation is that, as shown above, popular domains are
more likely hosted on progressive infrastructures (e.g., CDNs) than
the general population.

We next investigate HTTP/2 adoption between top lists based
on Figure 8. Unsurprisingly, we observe HTTP/2 adoption differs
by list and by weekday for those lists with a weekday pattern (cf.,
§6.2). We also note the extremely different result when querying
the Top 1k lists as compared to the general population.

8.4 Takeaway
We have analysed the properties of top lists and the general popula-
tion across many layers, and found that top lists (i) generally show
significantly more extrememeasurement results, e.g., protocol adop-
tion. This effect is pronounced to up to 2 orders of magnitude for
the Top 1k domains. Results can (ii) be affected by a weekly pattern,
e.g., the % of protocol adoption may yield a different result when
using a list generated on a weekend as compared to a weekday.
This is a significant limitation to be kept in mind when using top
lists for measurement studies.

9 DISCUSSION
We have shown in §3 that top lists are being frequently used in
scientific studies. We acknowledge that using top lists has distinct
advantages—they provide a set of relevant domains at a small and
stable size that can be compared over time. However, the use of
top lists also comes with certain disadvantages, which we have
explored in this paper.

First, while it is the stated purpose of a top list to provide a
sample biased towards the list’s specific measure of popularity,
these samples do not represent the general state in the Internet well:

we have observed in §8 that almost all conceivable measurements
suffer significant bias when using a Top 1M list, and excessive bias
in terms of magnitudes when using a Top 1k list. This indicates
that domains in top lists exhibit behaviour significantly different
from the general population—quantitative insights based on top
list domains likely will not generalise.

Second, we have shown that top lists can significantly change
from day to day, rendering results of one-off measurements un-
stable. A similar effect is that lists may be structurally different
on weekends and weekdays, yielding differences in results purely
based on the day of week when a list was downloaded.

Third, the choice of a certain top list can significantly influence
measurement results as well, e.g., for CDN or AS structure (cf.,
§8.1.2), which stems from different lists having different sampling
biases. While these effects can be desired, e.g., to find many domains
that adopt a certain new technology, it leads to bad generalisation
of results to “the Internet”, and results obtained from measuring
top lists must be interpreted very carefully.

9.1 Recommendation for Top List Use
Based on our observations, we develop specific recommendations
for the use of top lists. §3 has revealed that top lists are used for
different purposes in diverse fields of research. The impact of the
specific problems we have discussed will differ by study purpose,
which is why we consider the following a set of core questions to
be considered by study authors—and not a definite guideline.

Match Choice of List to Study Purpose: Based on a precise
understanding of what the domains in a list represent, an appropri-
ate list type should be carefully chosen for a study. For example, the
Umbrella list represents DNS names queried by many individual
clients using OpenDNS (not only PCs, but also mobile devices and
IoT devices), some bogus, some non-existent, but overall a repre-
sentation of typical DNS traffic, and may form a good base for DNS
analyses. The Alexa list gives a solid choice of functional websites
frequently visited by users, and may be a good choice for a human
web-centered study. Through its link-counting, the Majestic list
also includes “hidden” links, and may include domains frequently
loaded, but not necessarily knowingly requested by humans. To
obtain a reasonably general picture of the Internet, we recommend
to scan a large sample, such as the “general population” used in §8,
i.e., the set of all com/net/org domains.

Consider Stability: With lists changing up to 50% per day,
insights from measurement results might not even generalise to
the next day. For most measurement studies, stability should be
increased by conducting repeated, longitudinal measurements. This
also helps to avoid bias from weekday vs. weekend lists.

Document List and Measurement Details: Studies should
note the precise list (e.g., Alexa Global Top 1M), its download date,
and the measurements date to enable basic replicability. Ideally, the
list used should be shared in a paper’s dataset.

9.2 Desired Properties for Top Lists
Based on the challenges discussed in this work, we derive various
properties that top lists should offer:

Consistency: The characteristic, mainly structure and stability,
of top lists should be kept static over time. Where changes are
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required due to the evolving nature of the Internet, these should be
announced and documented.

Transparency: Top list providers should be transparent about
their ranking process and biases to help researchers understand
and potentially control those biases. This may, of course, contradict
the business interests of commercial list providers.

Stability: List stability faces a difficult trade-off:While capturing
the ever-evolving trends in the Internet requires recent data, many
typical top list uses are not stable to changes of up to 50% per day.
We hence suggest that lists should be offered as long-term (e.g., a
90-day sliding window) and short-term (e.g., only the most recent
data) versions.

9.3 Ethical Considerations
We aim to minimise harm to all stakeholders possibly affected by
our work. For active scans, we minimise interference by following
best scanning practices [132], such as maintaining a blacklist, us-
ing dedicated servers with meaningful rDNS records, websites, and
abuse contacts. We assess whether data collection can harm individ-
uals and follow the beneficence principle as proposed by [133, 134].

Regarding list influencing in §7, the ethical implications of insert-
ing a test domain into the Top 1M domains is small and unlikely to
cause any harm. In order to influence Umbrella ranks, we generated
DNS traffic. For this, we selected query volumes unlikely to cause
problems with the OpenDNS infrastructure or the RIPE Atlas plat-
form. Regarding the RIPE Atlas platform, we spread probes across
the measurements as carefully as possible: 10k probes queried spe-
cific domains 100, 50, 10, and 1 times per day. In addition, 100, 1000,
and 5000 probes performed an additional 100 queries per day. Per
probe, that means 6,100 probes generated 261 queries per day (fewer
than 11 queries per hour), and another 3,900 probes generated 161
queries per day. Refer to Figure 5 to visualise the query volume.
That implies a total workload of around 2,220,000 queries per day.
As the OpenDNS service is anycasted across multiple locations, it
seems unlikely that our workload was a problem for the service.

10 RELATEDWORK
We consider our work to be related to three fields:

Sound Internet Measurements: There exists a canon of work
with guidelines on sound Internet measurements, such as [132, 135–
137]. These set out useful guidelines for measurements in general,
but do not specifically tackle the issue of top lists.

Measuring Web Popularity: Understanding web popularity
is important for marketing as well as for business performance
analyses. A book authored by Croll and Power [138] warns site
owners about the potential instrumentation biases present in Alexa
ranks, specially with low-traffic sites. Besides that, there is a set
of blog posts and articles from the SEO space about anecdotal
problemswith certain top lists, but none of these conduct systematic
analyses [4, 139].

Limitations of Using Top Lists in Research: Despite the fact
that top lists are widely used by research papers, we are not aware
of any study focusing on the content of popular lists. However, a
number of research papers mentioned the limitations of relying on
those ranks for their specific research efforts [45, 67]. Wählisch et

al. [90] discuss the challenges of using top lists for web measure-
ments. They demonstrate that results vary when including www
subdomains, and investigate root causes such as routing failures.
The aforementioned recent work by le Pochat et al. [114] focuses
on manipulating top lists.

11 CONCLUSION
To the best of our knowledge, this is the first comprehensive study of
the structure, stability, and significance of popular Internet top lists.
We have shown that use of top lists is significant among networking
papers, and found distinctive structural characteristics per list. List
stability has revealed interesting highlights, such as up to 50%
churn per day for some lists. We have closely investigated ranking
mechanisms of lists and manipulated a test domain’s Umbrella rank
in a controlled experiment. Systematic measurement of top list
domain characteristics and reproduction of studies has revealed
that top lists in general significantly distort results from the general
population, and that results can depend on the day of week. We
closed our work with a discussion on desirable properties of top
lists and recommendations for top list use in science. We share code,
data, and additional insights under

https://toplists.github.io

For long-term access, we provide an archival mirror at the TUM
University Library: https://mediatum.ub.tum.de/1452290.
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